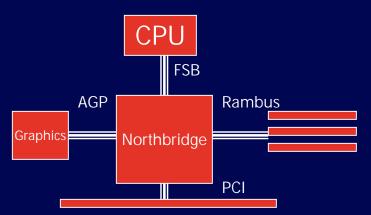
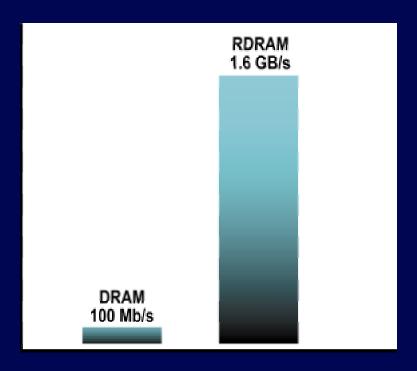
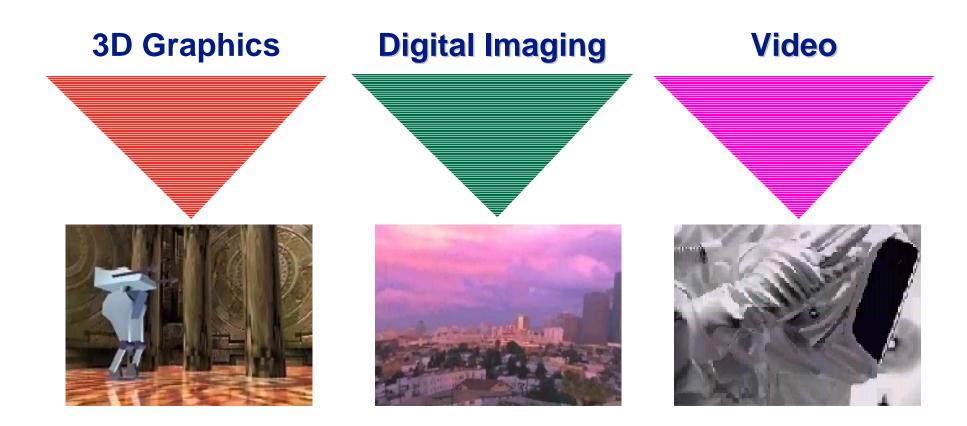
Rambus Overview


- What is Rambus?
- Why is Rambus being adopted?
- Who is adopting Rambus?
- Where is Rambus being adopted?
- What is the History of Rambus?
- What are the Rambus design challenges and how does Tektronix help?

Rambus Technology


- High speed memory bus
- Uses CMOS DRAM technology, memory controller, and IC technology
- Unique DRAM (RDRAM) package and channel architecture
- Up to 32 32, 64, or 128 Mb RDRAMs are supported
- Replaces PCI/SDRAM

The Rambus Advantage


- 10X Data throughput increase over PCI/SDRAM
- Uses fewer IC's and area than PCI/SDRAM
- Modular and Scalable

Visual Computing

More Intuitive Computing Experience

Memory Bandwidth Requirements

Main Memory BW 3GB/sec **nDRAM SDRAM** 500MB/sec **EDO DRAM** 100MB/sec Time **Source: Intel Corp**

Rambus Adopters

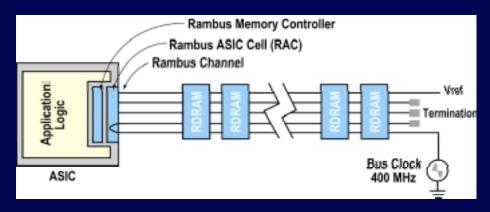
PC & Server	•	Acer Laboratories Inc. (ALi) PC main memory chip sets
	•	AMD chip sets for K7 processors
	•	Compaq Computer Corporation, AlphaServer enterprise computing systems
	•	IBM PC 300GL with Pentium II
	•	Intel Corporation future PC system memory chip sets
	•	NEC Corporation ValueStar NX and NetFine NX PCs
	•	National Semiconductor Corporation future PC high-performance processors
PC Graphics	•	Evans & Sutherland 3D Visualization Graphics System
	•	VideoLogic Power VR(TM) Graphics Controller
Datacomm	•	Berkeley Networks exponeNT network switch
	•	Brocade Communications SilkWorm network switch
	•	TI ThunderSwitch II Gigabit Ethernet devices for network-switching
Video Games	•	Nintendo64 3D graphics video game system
	•	Sony Next Generation PlayStation(R) System

Tektronix enables Rambus

- Tektronix is a Rambus
 Developer
- Tektronix recognized by Rambus and Intel for Rambus measurement expertise and measurement solutions
- www.tektronix.com/rambus

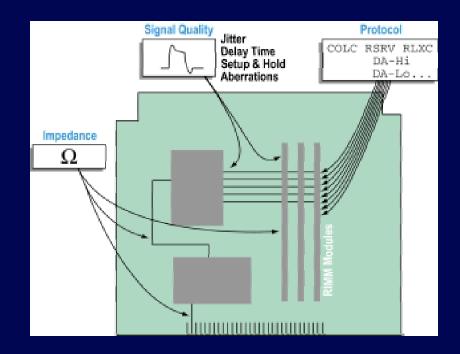
Rambus WW Activity

- Component Design & Mfg: US, Japan, Korea
- PCB Manufacture: Taiwan, US
- System Design: US, Japan, Taiwan


Rambus History

- March 1990: Rambus is Incorporated
- June 1992: Toshiba demonstrates working 4Mbit RDRAM
- September 1994: NEC ships 16M RDRAMs to SGI
- July 10, 1995: SGI announces plans to ship Indigo2 IMPACT(TM) workstations with Rambus graphics memory
- December 1995: Nintendo64 ships with Rambus DRAMs
- December 1996: Rambus and Intel disclose agreement to evolve RDRAMs to meet requirements of PC main memory
- June 22, 1998: Rambus, Intel, Toshiba and LG Semicon announce system testing of Direct RDRAM devices at 1.6 Gigabytes per second
- November 1998: Intel demonstrates 800MHz RDRAMS
- February 24, 1999: Mobile system memory components Specs revealed

Rambus Technology


- Rambus Channel has 30 controlled-impedance, matched transmission lines
 - Two 9-bit data buses (DQA and DQB)
 - A 3-bit ROW bus
 - A 5-bit COL bus
 - CTM and CFM differential clock buses
- Single device access on a Rambus Channel
- Parallel channels with full-length clock routing
- All signals are parallel-terminated to V_{ref} at end

Rambus Challenges

- Tight Impedance Control
- Rambus Signaling Level (RSL) environment
 - 400 MHz differential clock/800 MHz data rate
 - 800 mV signal level around 1.4V ref
 - 200 ps setup and hold times
 - Bi-directional data flow
- Complex Protocol with high data rates

